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J.  Phys. A: Math. Gen. 21 (1988) 1907-1912, Printed in the UK 

COMMENT 

On Kronecker products of irreducible representations of the 
symmetric group? 

C J Cummins 
Centre de Recherches Mathimatiques, Universite de Montreal, Montreal, Quebec, Canada 
and Department of Physics, University of McGill, Montreal, Quebec, Canada 

Received 7 July 1987, in final form 14 December 1987 

Abstract. A formula for the reduction of Kronecker products of irreducible representations 
of the symmetric group due to Littlewood is derived using the algebra of S functions. 

The irreducible characters of S , ,  the symmetric group of permutations of n objects, 
may be denoted by x(A), where A = ( A , ,  A * ,  . . . , A k )  is a partition of n, i.e. a weakly 
decreasing sequence of non-negative integers whose sum is n. Given two irreducible 
characters x(A) and x ( ~ )  the reduction oftheir product into its irreducible components, 

may, in principle, be performed easily using character tables. In practice, however, 
this method rapidly becomes unwieldy as n increases. This problem has stimulated 
the search for more efficient ways of performing these products. The most remarkable 
results in this direction were obtained by Murnaghan, who, in a series of papers 
(Murnaghan 1951, 1955a, b, c 1956) produced formulae for characters, Kronecker 
products and symmetrised Kronecker products which may be applied to all values of 
n. ( A  useful commentary on these results may be found in Gorenstein (1974).) 

The key idea introduced in these papers is the notion of a reduced partition 
A = ( n  -/ai, a ) ,  where a is a partition and n a fixed positive integer. Thus A is a 
sequence of integers whose first term is n - /a / ,  the second a, ,  the third a2 and so on. 
To each reduced partition A = ( n  - lal, a )  there corresponds an element of the character 
ring of S ,  denoted by ,$(a), which is, up to a sign factor, an irreducible character or 
zero. If n -/a1 2 al, i.e. if n is sufficiently large, then A is a partition and ,$(a) =x(A). 
On the other hand, if n - la1 < a1 then the character corresponding to ,$(a) must be 
calculated using modification rules (Littlewood 1950, p 98). Equivalently ;(a) may 
be defined by means of a determinant depending on A (see below). 

It is a remarkable fact that the products of the reduced characters ,$(a) do not 
depend explicitly on the value of n, except through modification rules which need only 
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be applied for small values of n. For example, Hamermesh (1962) records the following: 

i ( l ) i ( l )  = i ( 2 )  +,?(I2)  + /?(I )  + i ( O )  
i ( l ) i ( 2 )  = i ( 3 )  +m, 1) + i ( 2 )  + i ( 1 2 )  + ,a11  

(2) 
i ( i ) i ( i 2 )  = i ( 2 ,  1 ) + i ( i 3 )  + i ( 2 )  +i( i 2 )  +i(  1 )  

2(2);(2) = i ( 4 )  + f ( 3 , i )  +2 (22)  + i ( 3 ) + 2 i ( 2 ,  1 ) + i ( i 3 )  + 2 f ( 2 ) + i ( i 2 )  +;(i) + i ( o ) .  
More results of this type can be found in Murnaghan’s papers. 

Although it is quite possible to develop the whole theory of these reduced characters 
solely from the point of view of the symmetric group, it turns out to be somewhat 
simpler (not least from a notational point of view) to make use of the Z-linear mapping 

between the ring 8, consisting of the direct sum of character rings of the symmetric 
groups, and the ring A, of symmetric functions (see, for example, Macdonald 1979). 
Here { A }  is the S function labelled by the partition A(S, in Macdonald’s notation). 
The product ( 1 )  gives rise in A to the ‘inner product’, {A}o{p}, of S functions, i.e. 

While the outer or ‘Littlewood-Richardson’ product of S functions, {A}{ p } ,  corre- 
sponds to the character ind,,,(x(A)X(p)) of S,,, induced from the characterx(A)x(p) 
of S, x S,, i.e. 

a :%+ A a(x(A)) = { A }  

a(x(A)x(p)) = { A }  o b.). (3)  

.s(ind,,,(x(A)x(p))) = { A H l l } .  (4) 
Thus we may perform our calculations in A and then interpret the results in terms of 
symmetric group characters. 

We should introduce at this point the idea of S-function division which is defined 
via the Littlewood-Richardson product as follows. First write 

{ A l b }  =c r:,,{v) ( 5 )  ” 
where r;,, are non-negative integers known as the Littlewood-Richardson coefficients 
(Littlewood and Richardson 1934). Using these we may define a bilinear product 

{A}/{pl= c r ;u{4  (6) 
U 

which is known as S function division. At first sight there seems to be little to be 
gained from this definition since it might be argued that any formula involving 
{ h } { p } ,  { A } / { p }  or { A }  0 { p }  ultimately boils down to a statement concerning Little- 
wood-Richardson coefficients and the coefficients gAwy  (which can in fact be expressed 
in terms of Littlewood-Richardson coefficients). This argument can, however, be 
countered by citing several advantages of this new notation. Firstly, formulae involving 
S-function operations can be given a transparent interpretation in terms of tensor 
methods which facilitates both their manipulation and discovery (in fact it was using 
just this line of reasoning that led Littlewood to his product formula that will soon be 
described). Secondly, there are several identities satisfied by the Littlewood- 
Richardson coefficients that are most simply expressed and manipulated as identities 
satisfied by the three operations of inner and outer multiplication and division. These 
will play a key role later in the proof presented below. 

Now let ((T) = a(f(o)) .  Littlewood (1958) has stated the following: 
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where the sum is over all partitions 6, p and P. The advantage of this result is that it 
allows the calculation of general products of the form (2) ,  provided we know certain 
particular inner products (6) 0 { p }  and have a method of calculating the various 
Littlewood-Richardson coefficients (for which there exists a simple combinatorial 
procedure). An example will make this process clearer. Consider the product (1) 0 ( 1 )  
(,$( 1),$( 1 )  in terms of symmetric group characters); in this case ( 7 )  yields after a little 
simplification 

~ ~ ) o ~ ~ ~ = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ + ~ ~ ~ ~ o ~ ~ ~ ~ + ~ ~ ~ ~ o ~ ~ ~ ~  

(1 )  0 (1) = ( 2 )  + ( 12) + (1 )  + (0) 

and since {0} 0 (0) = {0}, { l }  0 { l }  = (1) and { 1}{ 1) = (2) + {12} we obtain 

as expected. This result now applies to any value of n, for example for n = 10, 

(9, 1}0{9, 1}={8,2}+{8, 12}+{9, 1}+{10} 

corresponding to 

x(9 ,1 )x (9 ,1 )  = x ( 8 , 2 ) + x ( 8 ,  12)+x(9 ,  1)+x(10)  
in Sl0. 

Littlewood sketched a proof of (7) making use of the fact that S ,  may be charac- 
terised as the subgroup of SU(n - 1) leaving invariant certain symmetric tensors of 
second and third rank. It is the aim of this comment to provide a proof of this result 
which uses only the properties of S functions. The notation used follows that of 
Littlewood (1950,1958) (see also Macdonald (1979)). Note that {a0 T}, {a/.} and 
{a.} are used as abbreviations for { a }  0 { T}, {a}/{  T} and {a}{ T}, respectively. 
Throughout sums not shown explicitly are over all partitions in the case of greek letters 
and from zero to infinity in the case of latin letters. 

An advantage of working with symmetric functions is that the determinantal 
expansion, 

{A}=det{A,-i+j} (8) 
of {A}  in terms of the complete symmetric functions { m }  gives rise to a natural definition 
of (a )  as a determinant. Thus if A = ( n  - / a / ,  a ) ,  as above, then we set 

(a )  = det{A, - i + j } .  (9) 
If n - la1 3 a1 then A is a partition and so, comparing (8) and (9),  we have (a )  = {A}. 
On the other hand, if n - la1 < aI then by rearranging the rows of the determinant in 
equation (9) we obtain * the determinantal expansion of some S function {T}, or 
zero. This is the modification rule referred to above. We regard ,$( a )  as being defined 
by (9) via a-' .  

By expanding the first row of det{A, - i+j} another form of (a )  is obtained, 

where s = la1 and / ( a )  is the depth (number of parts) of a, 
To proceed, we require a formula relating S-function division and multiplication 

due to Foulkes (1949) and a formula that relates the inner and outer products of S 
functions. The former takes the form 
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As noted above, these two formulae owe their origin to identities satisfied by the 
Littlewood-Richardson coefficients and the coefficients g A C y .  These may be found in 
a straightforward manner by using equations ( 1 )  (or rather its equivalent form for S 
functions), (5 )  and (6) to express the various products in terms of their structure 
constants and then equating the coefficients of the basis { v}. Somewhat surprisingly 
the resulting expression in the case of equation (12) may be shown after a little 
manipulation, the details of which may safely be left to the reader, to be equivalent 
to the identity 

( { A I  O {7))/{al =c  ( { A } / { a o  6)) O ({T/Sl) (13)  
0 

which appears to be quite different from (12). We shall make use of this relationship 
later. 

It should be noted that the proof of the product formula (7) which follows hinges 
on the three equations (8), ( 1 1 )  and (12) and the results that will be derived from 
them. Since proofs of each of these exist in the literature or follow immediately 
from known results, it would be inappropriate to give detailed derivations here. 
We simply note that (8) is contained in Macdonald (1979), ( 1 1 )  was derived by 
Foulkes (1949) in a slightly different form and (12) follows from the expansion of 
the product { A ;  xy}{p; xy} in two different ways, where ( x y )  is the set of variables 
( x , y ,  , x , y 2 , .  . . , xmy,,) (see Littlewood (1956) theorem 111, for a proof based directly 
on properties of the symmetric group). In this last case use must be made of the 
standard expansion 

{ A ;  xy) =c {A 0 a;  XI{(+; Y >  (14) 
U 

a proof of which may once again be found in Macdonald (1979). 
Let us now commence the proof of equation (7 ) .  We shall first require a rather 

complicated expansion that follows easily, but somewhat tediously, from ( 1  1 )  and 
(12). Consider ( { a } { P } ) o  ( { U } ( { T } ) ;  using (12) we have 

( { a H P ) )  O ({aHd) = c { a  O S } ( { P }  O ( { a T ) / { S ) ) )  
S 

and applying ( 1  1 )  to the second term and changing the summation variables (the odd 
labelling of these variables is to simplify the final expression), 

= ( {a>'  {Yzsi})({p} O ({C/Yd{T/Si})) .  
Y2.61 

Once again using (12) we find 

= c ( { ~ / Y l ~ O { Y * J ) { Y I  O SlH{P} O ( { f l / Y 2 H T / L % } ) ) .  
YI  .Y2 

8 ,  

Changing the summation variables yields 

= c ( { a / Y l } o { ~ / Y * } ) ( { Y l }  O {7/Sl))({P) ( Y 2 S I ) )  
YI  .Y2 

61 

and finally applying (12) to the last term 

= c ( { a / Y I }  O { a / Y r ) ) ( { Y J  O { 7 / 6 1 J ) ( { P / S , ) o  {Y21){6*0 8 , ) .  
Y I  3YZ 
61 .& 
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Putting this all together we have the following result: 

( {a } {P} )  O ( { a ) { T } )  = ({a/?'i} O {fl/?'2})(?'1 O {7/S1})(?'2 O {P/&)){Si O 8,). (15)  
81 82 Y I  Y2 

Now consider the product ( a ) o ( ~ ) ,  using (10) and (15) 

( - ~ ) ~ + ~ { n  - s + a - gl} 0 {n - t + b - g2} (a) o ( T )  = 
a,b,gi .g2,61.6, 

x { g J o  {7/lb~,>{g2}o { ( + / 1 " ~ 2 } { ~ , I o  (82) (16) 
where s = la1 and t = I T / .  From the second term g, = t - b - S and from the third 
g, = s - a - S(6 = ) S I (  = IS,[). Hence (16) simplifies to 

(a) 0 ( T )  = (-l)4'b{n - s - t + a + b + S } ( T / ~ ~ S , } { ~ /  14S2){6,} 0 {S2}. 
4.b 61.82 

Now we have the simple result (Littlewood 1950, p 107) 

if {PI = (01 
zero otherwise 

where { a }  = (-l)"'{a'}, a '  being the partition conjugate to a. Using (18) the following 
insertion may be made into (17): 

(a) 0 (7)  = ( -l)atb{ n - s - t + a + b + S + 2lpI}{~/ lbS,a ( P / a * ) }  
4.b 81 ,82 4 

x { ~ l l 4 ~ ~ P ~ { ~ J o { ~ ~ I  

and rearranging the sum over a and P yields 

(a) 0 ( T )  = ( -l)4+b{n - s - t + a + b + S + 2IPI + 21a I } {  T /  1 bS,a/3} 
4.b 61~62 n,P 

Next, rearranging the sums over S I ,  S2 and a gives 

( a )  0 ( T ) =  (-l)"+b{n - s  - t + a  + b + S + 2 1 p ( + l a 1 } { ~ / 1 ~ S ~ P }  
4 ,b  61 , a 2  0.6 

x { a l l 4 6 2 P } { S 1 / a } o { S , / ~ * } .  (21) 
Using equation (13) and the fact that {1IA'} 0 { A }  = {A'} it is easy to see that 

Thus equation (21) becomes 

( a )  0 ( 7 )  = (-l)4+b+c{n - s - t + a + b + c +  6 +21P1}{~/1~8,P} 
81.61 P 

x { a / l " ~ t P ) ( { S , >  O {S,>)/{lC> (23) 

1 ( - i ) m ( { a } { ~ I { ~ } ) / { i m I  = C ( -1 )4+b+c{a /14} {~ /1b} {~ /1c~.  (24) 

and, from (1 1) and some well known properties of Littlewood-Richardson coefficients, 

m a,b,c 

It follows that we have 

(a) 0 ( T )  = (-l)"{n - s  - t + 6 +ZIP1 + m) 
m 61-62 P 
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Thus from equation (10) 

which is equation (7) as required. 
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